// // gif.h // by Charlie Tangora // Public domain. // Email me : ctangora -at- gmail -dot- com // // This file offers a simple, very limited way to create animated GIFs directly in code. // // Those looking for particular cleverness are likely to be disappointed; it's pretty // much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg // dithering. (It does at least use delta encoding - only the changed portions of each // frame are saved.) // // So resulting files are often quite large. The hope is that it will be handy nonetheless // as a quick and easily-integrated way for programs to spit out animations. // // Only RGBA8 is currently supported as an input format. (The alpha is ignored.) // // If capturing a buffer with a bottom-left origin (such as OpenGL), define GIF_FLIP_VERT // to automatically flip the buffer data when writing the image (the buffer itself is // unchanged. // // USAGE: // Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header. // Pass subsequent frames to GifWriteFrame(). // Finally, call GifEnd() to close the file handle and free memory. // #ifndef gif_h #define gif_h #include <stdio.h> // for FILE* #include <string.h> // for memcpy and bzero #include <stdint.h> // for integer typedefs #include <stdbool.h> // for bool macros // Define these macros to hook into a custom memory allocator. // TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs // and any temp memory allocated by a function will be freed before it exits. // MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which // is used to find changed pixels for delta-encoding.) #ifndef GIF_TEMP_MALLOC #include <stdlib.h> #define GIF_TEMP_MALLOC malloc #endif #ifndef GIF_TEMP_FREE #include <stdlib.h> #define GIF_TEMP_FREE free #endif #ifndef GIF_MALLOC #include <stdlib.h> #define GIF_MALLOC malloc #endif #ifndef GIF_FREE #include <stdlib.h> #define GIF_FREE free #endif const int kGifTransIndex = 0; typedef struct { int bitDepth; uint8_t r[256]; uint8_t g[256]; uint8_t b[256]; // k-d tree over RGB space, organized in heap fashion // i.e. left child of node i is node i*2, right child is node i*2+1 // nodes 256-511 are implicitly the leaves, containing a color uint8_t treeSplitElt[256]; uint8_t treeSplit[256]; } GifPalette; // max, min, and abs functions int GifIMax(int l, int r) { return l>r?l:r; } int GifIMin(int l, int r) { return l<r?l:r; } int GifIAbs(int i) { return i<0?-i:i; } // walks the k-d tree to pick the palette entry for a desired color. // Takes as in/out parameters the current best color and its error - // only changes them if it finds a better color in its subtree. // this is the major hotspot in the code at the moment. void GifGetClosestPaletteColor( GifPalette* pPal, int r, int g, int b, int* bestInd, int* bestDiff, int treeRoot ) { // base case, reached the bottom of the tree if(treeRoot > (1<<pPal->bitDepth)-1) { int ind = treeRoot-(1<<pPal->bitDepth); if(ind == kGifTransIndex) return; // check whether this color is better than the current winner int r_err = r - ((int32_t)pPal->r[ind]); int g_err = g - ((int32_t)pPal->g[ind]); int b_err = b - ((int32_t)pPal->b[ind]); int diff = GifIAbs(r_err)+GifIAbs(g_err)+GifIAbs(b_err); if(diff < *bestDiff) { *bestInd = ind; *bestDiff = diff; } return; } // take the appropriate color (r, g, or b) for this node of the k-d tree int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b; int splitComp = comps[pPal->treeSplitElt[treeRoot]]; int splitPos = pPal->treeSplit[treeRoot]; if(splitPos > splitComp) { // check the left subtree GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2); if( *bestDiff > splitPos - splitComp ) { // cannot prove there's not a better value in the right subtree, check that too GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1); } } else { GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1); if( *bestDiff > splitComp - splitPos ) { GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2); } } } void GifSwapPixels(uint8_t* image, int pixA, int pixB) { uint8_t rA = image[pixA*4]; uint8_t gA = image[pixA*4+1]; uint8_t bA = image[pixA*4+2]; uint8_t aA = image[pixA*4+3]; uint8_t rB = image[pixB*4]; uint8_t gB = image[pixB*4+1]; uint8_t bB = image[pixB*4+2]; uint8_t aB = image[pixA*4+3]; image[pixA*4] = rB; image[pixA*4+1] = gB; image[pixA*4+2] = bB; image[pixA*4+3] = aB; image[pixB*4] = rA; image[pixB*4+1] = gA; image[pixB*4+2] = bA; image[pixB*4+3] = aA; } // just the partition operation from quicksort int GifPartition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex) { const int pivotValue = image[(pivotIndex)*4+elt]; GifSwapPixels(image, pivotIndex, right-1); int storeIndex = left; bool split = 0; for(int ii=left; ii<right-1; ++ii) { int arrayVal = image[ii*4+elt]; if( arrayVal < pivotValue ) { GifSwapPixels(image, ii, storeIndex); ++storeIndex; } else if( arrayVal == pivotValue ) { if(split) { GifSwapPixels(image, ii, storeIndex); ++storeIndex; } split = !split; } } GifSwapPixels(image, storeIndex, right-1); return storeIndex; } // Perform an incomplete sort, finding all elements above and below the desired median void GifPartitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter) { if(left < right-1) { int pivotIndex = left + (right-left)/2; pivotIndex = GifPartition(image, left, right, com, pivotIndex); // Only "sort" the section of the array that contains the median if(pivotIndex > neededCenter) GifPartitionByMedian(image, left, pivotIndex, com, neededCenter); if(pivotIndex < neededCenter) GifPartitionByMedian(image, pivotIndex+1, right, com, neededCenter); } } // Builds a palette by creating a balanced k-d tree of all pixels in the image void GifSplitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette* pal) { if(lastElt <= firstElt || numPixels == 0) return; // base case, bottom of the tree if(lastElt == firstElt+1) { if(buildForDither) { // Dithering needs at least one color as dark as anything // in the image and at least one brightest color - // otherwise it builds up error and produces strange artifacts if( firstElt == 1 ) { // special case: the darkest color in the image uint32_t r=255, g=255, b=255; for(int ii=0; ii<numPixels; ++ii) { r = (uint32_t)GifIMin((int32_t)r, image[ii * 4 + 0]); g = (uint32_t)GifIMin((int32_t)g, image[ii * 4 + 1]); b = (uint32_t)GifIMin((int32_t)b, image[ii * 4 + 2]); } pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } if( firstElt == (1 << pal->bitDepth)-1 ) { // special case: the lightest color in the image uint32_t r=0, g=0, b=0; for(int ii=0; ii<numPixels; ++ii) { r = (uint32_t)GifIMax((int32_t)r, image[ii * 4 + 0]); g = (uint32_t)GifIMax((int32_t)g, image[ii * 4 + 1]); b = (uint32_t)GifIMax((int32_t)b, image[ii * 4 + 2]); } pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } } // otherwise, take the average of all colors in this subcube uint64_t r=0, g=0, b=0; for(int ii=0; ii<numPixels; ++ii) { r += image[ii*4+0]; g += image[ii*4+1]; b += image[ii*4+2]; } r += (uint64_t)numPixels / 2; // round to nearest g += (uint64_t)numPixels / 2; b += (uint64_t)numPixels / 2; r /= (uint64_t)numPixels; g /= (uint64_t)numPixels; b /= (uint64_t)numPixels; pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } // Find the axis with the largest range int minR = 255, maxR = 0; int minG = 255, maxG = 0; int minB = 255, maxB = 0; for(int ii=0; ii<numPixels; ++ii) { int r = image[ii*4+0]; int g = image[ii*4+1]; int b = image[ii*4+2]; if(r > maxR) maxR = r; if(r < minR) minR = r; if(g > maxG) maxG = g; if(g < minG) minG = g; if(b > maxB) maxB = b; if(b < minB) minB = b; } int rRange = maxR - minR; int gRange = maxG - minG; int bRange = maxB - minB; // and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it) int splitCom = 1; if(bRange > gRange) splitCom = 2; if(rRange > bRange && rRange > gRange) splitCom = 0; int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt); int subPixelsB = numPixels-subPixelsA; GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA); pal->treeSplitElt[treeNode] = (uint8_t)splitCom; pal->treeSplit[treeNode] = image[subPixelsA*4+splitCom]; GifSplitPalette(image, subPixelsA, firstElt, splitElt, splitElt-splitDist, splitDist/2, treeNode*2, buildForDither, pal); GifSplitPalette(image+subPixelsA*4, subPixelsB, splitElt, lastElt, splitElt+splitDist, splitDist/2, treeNode*2+1, buildForDither, pal); } // Finds all pixels that have changed from the previous image and // moves them to the fromt of th buffer. // This allows us to build a palette optimized for the colors of the // changed pixels only. int GifPickChangedPixels( const uint8_t* lastFrame, uint8_t* frame, int numPixels ) { int numChanged = 0; uint8_t* writeIter = frame; for (int ii=0; ii<numPixels; ++ii) { if(lastFrame[0] != frame[0] || lastFrame[1] != frame[1] || lastFrame[2] != frame[2]) { writeIter[0] = frame[0]; writeIter[1] = frame[1]; writeIter[2] = frame[2]; ++numChanged; writeIter += 4; } lastFrame += 4; frame += 4; } return numChanged; } // Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom. // This is known as the "modified median split" technique void GifMakePalette( const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, int bitDepth, bool buildForDither, GifPalette* pPal ) { pPal->bitDepth = bitDepth; // SplitPalette is destructive (it sorts the pixels by color) so // we must create a copy of the image for it to destroy size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t)); uint8_t* destroyableImage = (uint8_t*)GIF_TEMP_MALLOC(imageSize); memcpy(destroyableImage, nextFrame, imageSize); int numPixels = (int)(width * height); if(lastFrame) numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels); const int lastElt = 1 << bitDepth; const int splitElt = lastElt/2; const int splitDist = splitElt/2; GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal); GIF_TEMP_FREE(destroyableImage); // add the bottom node for the transparency index pPal->treeSplit[1 << (bitDepth-1)] = 0; pPal->treeSplitElt[1 << (bitDepth-1)] = 0; pPal->r[0] = pPal->g[0] = pPal->b[0] = 0; } // Implements Floyd-Steinberg dithering, writes palette value to alpha void GifDitherImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal ) { int numPixels = (int)(width * height); // quantPixels initially holds color*256 for all pixels // The extra 8 bits of precision allow for sub-single-color error values // to be propagated int32_t *quantPixels = (int32_t *)GIF_TEMP_MALLOC(sizeof(int32_t) * (size_t)numPixels * 4); for( int ii=0; ii<numPixels*4; ++ii ) { uint8_t pix = nextFrame[ii]; int32_t pix16 = (int32_t)(pix) * 256; quantPixels[ii] = pix16; } for( uint32_t yy=0; yy<height; ++yy ) { for( uint32_t xx=0; xx<width; ++xx ) { int32_t* nextPix = quantPixels + 4*(yy*width+xx); const uint8_t* lastPix = lastFrame? lastFrame + 4*(yy*width+xx) : NULL; // Compute the colors we want (rounding to nearest) int32_t rr = (nextPix[0] + 127) / 256; int32_t gg = (nextPix[1] + 127) / 256; int32_t bb = (nextPix[2] + 127) / 256; // if it happens that we want the color from last frame, then just write out // a transparent pixel if( lastFrame && lastPix[0] == rr && lastPix[1] == gg && lastPix[2] == bb ) { nextPix[0] = rr; nextPix[1] = gg; nextPix[2] = bb; nextPix[3] = kGifTransIndex; continue; } int32_t bestDiff = 1000000; int32_t bestInd = kGifTransIndex; // Search the palete GifGetClosestPaletteColor(pPal, rr, gg, bb, &bestInd, &bestDiff, 1); // Write the result to the temp buffer int32_t r_err = nextPix[0] - (int32_t)(pPal->r[bestInd]) * 256; int32_t g_err = nextPix[1] - (int32_t)(pPal->g[bestInd]) * 256; int32_t b_err = nextPix[2] - (int32_t)(pPal->b[bestInd]) * 256; nextPix[0] = pPal->r[bestInd]; nextPix[1] = pPal->g[bestInd]; nextPix[2] = pPal->b[bestInd]; nextPix[3] = bestInd; // Propagate the error to the four adjacent locations // that we haven't touched yet int quantloc_7 = (int)(yy * width + xx + 1); int quantloc_3 = (int)(yy * width + width + xx - 1); int quantloc_5 = (int)(yy * width + width + xx); int quantloc_1 = (int)(yy * width + width + xx + 1); if(quantloc_7 < numPixels) { int32_t* pix7 = quantPixels+4*quantloc_7; pix7[0] += GifIMax( -pix7[0], r_err * 7 / 16 ); pix7[1] += GifIMax( -pix7[1], g_err * 7 / 16 ); pix7[2] += GifIMax( -pix7[2], b_err * 7 / 16 ); } if(quantloc_3 < numPixels) { int32_t* pix3 = quantPixels+4*quantloc_3; pix3[0] += GifIMax( -pix3[0], r_err * 3 / 16 ); pix3[1] += GifIMax( -pix3[1], g_err * 3 / 16 ); pix3[2] += GifIMax( -pix3[2], b_err * 3 / 16 ); } if(quantloc_5 < numPixels) { int32_t* pix5 = quantPixels+4*quantloc_5; pix5[0] += GifIMax( -pix5[0], r_err * 5 / 16 ); pix5[1] += GifIMax( -pix5[1], g_err * 5 / 16 ); pix5[2] += GifIMax( -pix5[2], b_err * 5 / 16 ); } if(quantloc_1 < numPixels) { int32_t* pix1 = quantPixels+4*quantloc_1; pix1[0] += GifIMax( -pix1[0], r_err / 16 ); pix1[1] += GifIMax( -pix1[1], g_err / 16 ); pix1[2] += GifIMax( -pix1[2], b_err / 16 ); } } } // Copy the palettized result to the output buffer for( int ii=0; ii<numPixels*4; ++ii ) { outFrame[ii] = (uint8_t)quantPixels[ii]; } GIF_TEMP_FREE(quantPixels); } // Picks palette colors for the image using simple thresholding, no dithering void GifThresholdImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal ) { uint32_t numPixels = width*height; for( uint32_t ii=0; ii<numPixels; ++ii ) { // if a previous color is available, and it matches the current color, // set the pixel to transparent if(lastFrame && lastFrame[0] == nextFrame[0] && lastFrame[1] == nextFrame[1] && lastFrame[2] == nextFrame[2]) { outFrame[0] = lastFrame[0]; outFrame[1] = lastFrame[1]; outFrame[2] = lastFrame[2]; outFrame[3] = kGifTransIndex; } else { // palettize the pixel int32_t bestDiff = 1000000; int32_t bestInd = 1; GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], &bestInd, &bestDiff, 1); // Write the resulting color to the output buffer outFrame[0] = pPal->r[bestInd]; outFrame[1] = pPal->g[bestInd]; outFrame[2] = pPal->b[bestInd]; outFrame[3] = (uint8_t)bestInd; } if(lastFrame) lastFrame += 4; outFrame += 4; nextFrame += 4; } } // Simple structure to write out the LZW-compressed portion of the image // one bit at a time typedef struct { uint8_t bitIndex; // how many bits in the partial byte written so far uint8_t byte; // current partial byte uint32_t chunkIndex; uint8_t chunk[256]; // bytes are written in here until we have 256 of them, then written to the file } GifBitStatus; // insert a single bit void GifWriteBit( GifBitStatus* stat, uint32_t bit ) { bit = bit & 1; bit = bit << stat->bitIndex; stat->byte |= bit; ++stat->bitIndex; if( stat->bitIndex > 7 ) { // move the newly-finished byte to the chunk buffer stat->chunk[stat->chunkIndex++] = stat->byte; // and start a new byte stat->bitIndex = 0; stat->byte = 0; } } // write all bytes so far to the file void GifWriteChunk( FILE* f, GifBitStatus* stat ) { fputc((int)stat->chunkIndex, f); fwrite(stat->chunk, 1, stat->chunkIndex, f); stat->bitIndex = 0; stat->byte = 0; stat->chunkIndex = 0; } void GifWriteCode( FILE* f, GifBitStatus* stat, uint32_t code, uint32_t length ) { for( uint32_t ii=0; ii<length; ++ii ) { GifWriteBit(stat, code); code = code >> 1; if( stat->chunkIndex == 255 ) { GifWriteChunk(f, stat); } } } // The LZW dictionary is a 256-ary tree constructed as the file is encoded, // this is one node typedef struct { uint16_t m_next[256]; } GifLzwNode; // write a 256-color (8-bit) image palette to the file void GifWritePalette( const GifPalette* pPal, FILE* f ) { fputc(0, f); // first color: transparency fputc(0, f); fputc(0, f); for(int ii=1; ii<(1 << pPal->bitDepth); ++ii) { uint32_t r = pPal->r[ii]; uint32_t g = pPal->g[ii]; uint32_t b = pPal->b[ii]; fputc((int)r, f); fputc((int)g, f); fputc((int)b, f); } } // write the image header, LZW-compress and write out the image void GifWriteLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top, uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal) { // graphics control extension fputc(0x21, f); fputc(0xf9, f); fputc(0x04, f); fputc(0x05, f); // leave prev frame in place, this frame has transparency fputc(delay & 0xff, f); fputc((delay >> 8) & 0xff, f); fputc(kGifTransIndex, f); // transparent color index fputc(0, f); fputc(0x2c, f); // image descriptor block fputc(left & 0xff, f); // corner of image in canvas space fputc((left >> 8) & 0xff, f); fputc(top & 0xff, f); fputc((top >> 8) & 0xff, f); fputc(width & 0xff, f); // width and height of image fputc((width >> 8) & 0xff, f); fputc(height & 0xff, f); fputc((height >> 8) & 0xff, f); //fputc(0, f); // no local color table, no transparency //fputc(0x80, f); // no local color table, but transparency fputc(0x80 + pPal->bitDepth-1, f); // local color table present, 2 ^ bitDepth entries GifWritePalette(pPal, f); const int minCodeSize = pPal->bitDepth; const uint32_t clearCode = 1 << pPal->bitDepth; fputc(minCodeSize, f); // min code size 8 bits GifLzwNode* codetree = (GifLzwNode*)GIF_TEMP_MALLOC(sizeof(GifLzwNode)*4096); memset(codetree, 0, sizeof(GifLzwNode)*4096); int32_t curCode = -1; uint32_t codeSize = (uint32_t)minCodeSize + 1; uint32_t maxCode = clearCode+1; GifBitStatus stat; stat.byte = 0; stat.bitIndex = 0; stat.chunkIndex = 0; GifWriteCode(f, &stat, clearCode, codeSize); // start with a fresh LZW dictionary for(uint32_t yy=0; yy<height; ++yy) { for(uint32_t xx=0; xx<width; ++xx) { #ifdef GIF_FLIP_VERT // bottom-left origin image (such as an OpenGL capture) uint8_t nextValue = image[((height-1-yy)*width+xx)*4+3]; #else // top-left origin uint8_t nextValue = image[(yy*width+xx)*4+3]; #endif // "loser mode" - no compression, every single code is followed immediately by a clear //WriteCode( f, stat, nextValue, codeSize ); //WriteCode( f, stat, 256, codeSize ); if( curCode < 0 ) { // first value in a new run curCode = nextValue; } else if( codetree[curCode].m_next[nextValue] ) { // current run already in the dictionary curCode = codetree[curCode].m_next[nextValue]; } else { // finish the current run, write a code GifWriteCode(f, &stat, (uint32_t)curCode, codeSize); // insert the new run into the dictionary codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode; if( maxCode >= (1ul << codeSize) ) { // dictionary entry count has broken a size barrier, // we need more bits for codes codeSize++; } if( maxCode == 4095 ) { // the dictionary is full, clear it out and begin anew GifWriteCode(f, &stat, clearCode, codeSize); // clear tree memset(codetree, 0, sizeof(GifLzwNode)*4096); codeSize = (uint32_t)(minCodeSize + 1); maxCode = clearCode+1; } curCode = nextValue; } } } // compression footer GifWriteCode(f, &stat, (uint32_t)curCode, codeSize); GifWriteCode(f, &stat, clearCode, codeSize); GifWriteCode(f, &stat, clearCode + 1, (uint32_t)minCodeSize + 1); // write out the last partial chunk while( stat.bitIndex ) GifWriteBit(&stat, 0); if( stat.chunkIndex ) GifWriteChunk(f, &stat); fputc(0, f); // image block terminator GIF_TEMP_FREE(codetree); } typedef struct { FILE* f; uint8_t* oldImage; bool firstFrame; } GifWriter; // Creates a gif file. // The input GIFWriter is assumed to be uninitialized. // The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value. bool GifBegin( GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false ) { (void)bitDepth; (void)dither; // Mute "Unused argument" warnings #if defined(_MSC_VER) && (_MSC_VER >= 1400) writer->f = 0; fopen_s(&writer->f, filename, "wb"); #else writer->f = fopen(filename, "wb"); #endif if(!writer->f) return false; writer->firstFrame = true; // allocate writer->oldImage = (uint8_t*)GIF_MALLOC(width*height*4); fputs("GIF89a", writer->f); // screen descriptor fputc(width & 0xff, writer->f); fputc((width >> 8) & 0xff, writer->f); fputc(height & 0xff, writer->f); fputc((height >> 8) & 0xff, writer->f); fputc(0xf0, writer->f); // there is an unsorted global color table of 2 entries fputc(0, writer->f); // background color fputc(0, writer->f); // pixels are square (we need to specify this because it's 1989) // now the "global" palette (really just a dummy palette) // color 0: black fputc(0, writer->f); fputc(0, writer->f); fputc(0, writer->f); // color 1: also black fputc(0, writer->f); fputc(0, writer->f); fputc(0, writer->f); if( delay != 0 ) { // animation header fputc(0x21, writer->f); // extension fputc(0xff, writer->f); // application specific fputc(11, writer->f); // length 11 fputs("NETSCAPE2.0", writer->f); // yes, really fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data fputc(1, writer->f); // JUST BECAUSE fputc(0, writer->f); // loop infinitely (byte 0) fputc(0, writer->f); // loop infinitely (byte 1) fputc(0, writer->f); // block terminator } return true; } // Writes out a new frame to a GIF in progress. // The GIFWriter should have been created by GIFBegin. // AFAIK, it is legal to use different bit depths for different frames of an image - // this may be handy to save bits in animations that don't change much. bool GifWriteFrame( GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, int bitDepth = 8, bool dither = false ) { if(!writer->f) return false; const uint8_t* oldImage = writer->firstFrame? NULL : writer->oldImage; writer->firstFrame = false; GifPalette pal; GifMakePalette((dither? NULL : oldImage), image, width, height, bitDepth, dither, &pal); if(dither) GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal); else GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal); GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal); return true; } // Writes the EOF code, closes the file handle, and frees temp memory used by a GIF. // Many if not most viewers will still display a GIF properly if the EOF code is missing, // but it's still a good idea to write it out. bool GifEnd( GifWriter* writer ) { if(!writer->f) return false; fputc(0x3b, writer->f); // end of file fclose(writer->f); GIF_FREE(writer->oldImage); writer->f = NULL; writer->oldImage = NULL; return true; } #endif