386 lines
12 KiB
C++

/* Copyright (C) 2021 Avamander
This file is part of InfiniTime.
InfiniTime is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InfiniTime is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
/**
* Different weather events, weather data structures used by {@link WeatherService.h}
*
* How to upload events to the timeline?
*
* All timeline write payloads are simply CBOR-encoded payloads of the structs described below.
*
* All payloads have a mandatory header part and the dynamic part that
* depends on the event type specified in the header. If you don't,
* you'll get an error returned. Data is relatively well-validated,
* so keep in the bounds of the data types given.
*
* Write all struct members (CamelCase keys) into a single finite-sized map, and write it to the characteristic.
* Mind the MTU.
*
* How to debug?
*
* There's a Screen that you can compile into your firmware that shows currently valid events.
* You can adapt that to display something else. That part right now is very much work in progress
* because the exact requirements are not yet known.
*
*
* Implemented based on and other material:
* https://en.wikipedia.org/wiki/METAR
* https://www.weather.gov/jetstream/obscurationtypes
* http://www.faraim.org/aim/aim-4-03-14-493.html
*/
namespace Pinetime {
namespace Controllers {
class WeatherData {
public:
/**
* Visibility obscuration types
*/
enum class obscurationtype {
/** No obscuration */
None = 0,
/** Water particles suspended in the air; low visibility; does not fall */
Fog = 1,
/** Tiny, dry particles in the air; invisible to the eye; opalescent */
Haze = 2,
/** Small fire-created particles suspended in the air */
Smoke = 3,
/** Fine rock powder, from for example volcanoes */
Ash = 4,
/** Fine particles of earth suspended in the air by the wind */
Dust = 5,
/** Fine particles of sand suspended in the air by the wind */
Sand = 6,
/** Water particles suspended in the air; low-ish visibility; temperature is near dewpoint */
Mist = 7,
/** This is SPECIAL in the sense that the thing raining down is doing the obscuration */
Precipitation = 8,
Length
};
/**
* Types of precipitation
*/
enum class precipitationtype {
/**
* No precipitation
*
* Theoretically we could just _not_ send the event, but then
* how do we differentiate between no precipitation and
* no information about precipitation
*/
None = 0,
/** Drops larger than a drizzle; also widely separated drizzle */
Rain = 1,
/** Fairly uniform rain consisting of fine drops */
Drizzle = 2,
/** Rain that freezes upon contact with objects and ground */
FreezingRain = 3,
/** Rain + hail; ice pellets; small translucent frozen raindrops */
Sleet = 4,
/** Larger ice pellets; falling separately or in irregular clumps */
Hail = 5,
/** Hail with smaller grains of ice; mini-snowballs */
SmallHail = 6,
/** Snow... */
Snow = 7,
/** Frozen drizzle; very small snow crystals */
SnowGrains = 8,
/** Needles; columns or plates of ice. Sometimes described as "diamond dust". In very cold regions */
IceCrystals = 9,
/** It's raining down ash, e.g. from a volcano */
Ash = 10,
Length
};
/**
* These are special events that can "enhance" the "experience" of existing weather events
*/
enum class specialtype {
/** Strong wind with a sudden onset that lasts at least a minute */
Squall = 0,
/** Series of waves in a water body caused by the displacement of a large volume of water */
Tsunami = 1,
/** Violent; rotating column of air */
Tornado = 2,
/** Unplanned; unwanted; uncontrolled fire in an area */
Fire = 3,
/** Thunder and/or lightning */
Thunder = 4,
Length
};
/**
* These are used for weather timeline manipulation
* that isn't just adding to the stack of weather events
*/
enum class controlcodes {
/** How much is stored already */
GetLength = 0,
/** This wipes the entire timeline */
DelTimeline = 1,
/** There's a currently valid timeline event with the given type */
HasValidEvent = 3,
Length
};
/**
* Events have types
* then they're easier to parse after sending them over the air
*/
enum class eventtype : uint8_t {
/** @see obscuration */
Obscuration = 0,
/** @see precipitation */
Precipitation = 1,
/** @see wind */
Wind = 2,
/** @see temperature */
Temperature = 3,
/** @see airquality */
AirQuality = 4,
/** @see special */
Special = 5,
/** @see pressure */
Pressure = 6,
/** @see location */
Location = 7,
/** @see cloud */
Clouds = 8,
/** @see humidity */
Humidity = 9,
Length
};
/**
* Valid event query
*
* NOTE: Not currently available, until needs are better known
*/
class ValidEventQuery {
public:
static constexpr controlcodes code = controlcodes::HasValidEvent;
eventtype eventType;
};
/** The header used for further parsing */
class TimelineHeader {
public:
/**
* UNIX timestamp
* TODO: This is currently WITH A TIMEZONE OFFSET!
* Please send events with the timestamp offset by the timezone.
**/
uint64_t timestamp;
/**
* Time in seconds until the event expires
*
* 32 bits ought to be enough for everyone
*
* If there's a newer event of the same type then it overrides this one, even if it hasn't expired
*/
uint32_t expires;
/**
* What type of weather-related event
*/
eventtype eventType;
};
/** Specifies how cloudiness is stored */
class Clouds : public TimelineHeader {
public:
/** Cloud coverage in percentage, 0-100% */
uint8_t amount;
};
/** Specifies how obscuration is stored */
class Obscuration : public TimelineHeader {
public:
/** Type of precipitation */
obscurationtype type;
/**
* Visibility distance in meters
* 65535 is reserved for unspecified
*/
uint16_t amount;
};
/** Specifies how precipitation is stored */
class Precipitation : public TimelineHeader {
public:
/** Type of precipitation */
precipitationtype type;
/**
* How much is it going to rain? In millimeters
* 255 is reserved for unspecified
**/
uint8_t amount;
};
/**
* How wind speed is stored
*
* In order to represent bursts of wind instead of constant wind,
* you have minimum and maximum speeds.
*
* As direction can fluctuate wildly and some watch faces might wish to display it nicely,
* we're following the aerospace industry weather report option of specifying a range.
*/
class Wind : public TimelineHeader {
public:
/** Meters per second */
uint8_t speedMin;
/** Meters per second */
uint8_t speedMax;
/** Unitless direction between 0-255; approximately 1 unit per 0.71 degrees */
uint8_t directionMin;
/** Unitless direction between 0-255; approximately 1 unit per 0.71 degrees */
uint8_t directionMax;
};
/**
* How temperature is stored
*
* As it's annoying to figure out the dewpoint on the watch,
* please send it from the companion
*
* We don't do floats, picodegrees are not useful. Make sure to multiply.
*/
class Temperature : public TimelineHeader {
public:
/**
* Temperature °C but multiplied by 100 (e.g. -12.50°C becomes -1250)
* -32768 is reserved for "no data"
*/
int16_t temperature;
/**
* Dewpoint °C but multiplied by 100 (e.g. -12.50°C becomes -1250)
* -32768 is reserved for "no data"
*/
int16_t dewPoint;
};
/**
* How location info is stored
*
* This can be mostly static with long expiration,
* as it usually is, but it could change during a trip for ex.
* so we allow changing it dynamically.
*
* Location info can be for some kind of map watch face
* or daylight calculations, should those be required.
*
*/
class Location : public TimelineHeader {
public:
/** Location name */
std::string location;
/** Altitude relative to sea level in meters */
int16_t altitude;
/** Latitude, EPSG:3857 (Google Maps, Openstreetmaps datum) */
int32_t latitude;
/** Longitude, EPSG:3857 (Google Maps, Openstreetmaps datum) */
int32_t longitude;
};
/**
* How humidity is stored
*/
class Humidity : public TimelineHeader {
public:
/** Relative humidity, 0-100% */
uint8_t humidity;
};
/**
* How air pressure is stored
*/
class Pressure : public TimelineHeader {
public:
/** Air pressure in hectopascals (hPa) */
int16_t pressure;
};
/**
* How special events are stored
*/
class Special : public TimelineHeader {
public:
/** Special event's type */
specialtype type;
};
/**
* How air quality is stored
*
* These events are a bit more complex because the topic is not simple,
* the intention is to heavy-lift the annoying preprocessing from the watch
* this allows watch face or watchapp makers to generate accurate alerts and graphics
*
* If this needs further enforced standardization, pull requests are welcome
*/
class AirQuality : public TimelineHeader {
public:
/**
* The name of the pollution
*
* for the sake of better compatibility with watchapps
* that might want to use this data for say visuals
* don't localize the name.
*
* Ideally watchapp itself localizes the name, if it's at all needed.
*
* E.g.
* For generic ones use "PM0.1", "PM5", "PM10"
* For chemical compounds use the molecular formula e.g. "NO2", "CO2", "O3"
* For pollen use the genus, e.g. "Betula" for birch or "Alternaria" for that mold's spores
*/
std::string polluter;
/**
* Amount of the pollution in SI units,
* otherwise it's going to be difficult to create UI, alerts
* and so on and for.
*
* See more:
* https://ec.europa.eu/environment/air/quality/standards.htm
* http://www.ourair.org/wp-content/uploads/2012-aaqs2.pdf
*
* Example units:
* count/m³ for pollen
* µgC/m³ for micrograms of organic carbon
* µg/m³ sulfates, PM0.1, PM1, PM2, PM10 and so on, dust
* mg/m³ CO2, CO
* ng/m³ for heavy metals
*
* List is not comprehensive, should be improved.
* The current ones are what watchapps assume!
*
* Note: ppb and ppm to concentration should be calculated on the companion, using
* the correct formula (taking into account temperature and air pressure)
*
* Note2: The amount is off by times 100, for two decimal places of precision.
* E.g. 54.32µg/m³ is 5432
*
*/
uint32_t amount;
};
};
}
}