netwatch.py/netaddr-0.7.10/netaddr/ip/sets.py

536 lines
17 KiB
Python

#-----------------------------------------------------------------------------
# Copyright (c) 2008-2012, David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""Set based operations for IP addresses and subnets."""
import sys as _sys
import itertools as _itertools
from netaddr.strategy import ipv4 as _ipv4, ipv6 as _ipv6
from netaddr.ip.intset import IntSet as _IntSet
from netaddr.ip import IPNetwork, IPAddress, cidr_merge, cidr_exclude, \
iprange_to_cidrs
from netaddr.compat import _zip, _sys_maxint, _dict_keys, _int_type
#-----------------------------------------------------------------------------
def partition_ips(iterable):
"""
Takes a sequence of IP addresses and networks splitting them into two
separate sequences by IP version.
:param iterable: a sequence or iterator contain IP addresses and networks.
:return: a two element tuple (ipv4_list, ipv6_list).
"""
# Start off using set as we'll remove any duplicates at the start.
if not hasattr(iterable, '__iter__'):
raise ValueError('A sequence or iterator is expected!')
ipv4 = []
ipv6 = []
for ip in iterable:
if not hasattr(ip, 'version'):
raise TypeError('IPAddress or IPNetwork expected!')
if ip.version == 4:
ipv4.append(ip)
else:
ipv6.append(ip)
return ipv4, ipv6
#-----------------------------------------------------------------------------
class IPSet(object):
"""
Represents an unordered collection (set) of unique IP addresses and
subnets.
"""
__slots__ = ('_cidrs',)
def __init__(self, iterable=None, flags=0):
"""
Constructor.
:param iterable: (optional) an iterable containing IP addresses and
subnets.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
self._cidrs = {}
if iterable is not None:
mergeable = []
for addr in iterable:
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
mergeable.append(addr)
for cidr in cidr_merge(mergeable):
self._cidrs[cidr] = True
def __getstate__(self):
""":return: Pickled state of an ``IPSet`` object."""
return tuple([cidr.__getstate__() for cidr in self._cidrs])
def __setstate__(self, state):
"""
:param state: data used to unpickle a pickled ``IPSet`` object.
"""
#TODO: this needs to be optimised.
self._cidrs = {}
for cidr_tuple in state:
value, prefixlen, version = cidr_tuple
if version == 4:
module = _ipv4
elif version == 6:
module = _ipv6
else:
raise ValueError('unpickling failed for object state %s' \
% str(state))
if 0 <= prefixlen <= module.width:
cidr = IPNetwork((value, prefixlen), version=module.version)
self._cidrs[cidr] = True
else:
raise ValueError('unpickling failed for object state %s' \
% str(state))
def compact(self):
"""
Compact internal list of `IPNetwork` objects using a CIDR merge.
"""
cidrs = cidr_merge(list(self._cidrs))
self._cidrs = dict(_zip(cidrs, [True] * len(cidrs)))
def __hash__(self):
"""
Raises ``TypeError`` if this method is called.
.. note:: IPSet objects are not hashable and cannot be used as \
dictionary keys or as members of other sets. \
"""
raise TypeError('IP sets are unhashable!')
def __contains__(self, ip):
"""
:param ip: An IP address or subnet.
:return: ``True`` if IP address or subnet is a member of this IP set.
"""
ip = IPNetwork(ip)
for cidr in self._cidrs:
if ip in cidr:
return True
return False
def __iter__(self):
"""
:return: an iterator over the IP addresses within this IP set.
"""
return _itertools.chain(*sorted(self._cidrs))
def iter_cidrs(self):
"""
:return: an iterator over individual IP subnets within this IP set.
"""
return sorted(self._cidrs)
def add(self, addr, flags=0):
"""
Adds an IP address or subnet to this IP set. Has no effect if it is
already present.
Note that where possible the IP address or subnet is merged with other
members of the set to form more concise CIDR blocks.
:param addr: An IP address or subnet.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
else:
addr = IPNetwork(addr)
self._cidrs[addr] = True
self.compact()
def remove(self, addr, flags=0):
"""
Removes an IP address or subnet from this IP set. Does nothing if it
is not already a member.
Note that this method behaves more like discard() found in regular
Python sets because it doesn't raise KeyError exceptions if the
IP address or subnet is question does not exist. It doesn't make sense
to fully emulate that behaviour here as IP sets contain groups of
individual IP addresses as individual set members using IPNetwork
objects.
:param addr: An IP address or subnet.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
else:
addr = IPNetwork(addr)
# This add() is required for address blocks provided that are larger
# than blocks found within the set but have overlaps. e.g. :-
#
# >>> IPSet(['192.0.2.0/24']).remove('192.0.2.0/23')
# IPSet([])
#
self.add(addr)
remainder = None
matching_cidr = None
# Search for a matching CIDR and exclude IP from it.
for cidr in self._cidrs:
if addr in cidr:
remainder = cidr_exclude(cidr, addr)
matching_cidr = cidr
break
# Replace matching CIDR with remaining CIDR elements.
if remainder is not None:
del self._cidrs[matching_cidr]
for cidr in remainder:
self._cidrs[cidr] = True
self.compact()
def pop(self):
"""
Removes and returns an arbitrary IP address or subnet from this IP
set.
:return: An IP address or subnet.
"""
return self._cidrs.popitem()[0]
def isdisjoint(self, other):
"""
:param other: an IP set.
:return: ``True`` if this IP set has no elements (IP addresses
or subnets) in common with other. Intersection *must* be an
empty set.
"""
result = self.intersection(other)
if result == IPSet():
return True
return False
def copy(self):
""":return: a shallow copy of this IP set."""
obj_copy = self.__class__()
obj_copy._cidrs.update(self._cidrs)
return obj_copy
def update(self, iterable, flags=0):
"""
Update the contents of this IP set with the union of itself and
other IP set.
:param iterable: an iterable containing IP addresses and subnets.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if not hasattr(iterable, '__iter__'):
raise TypeError('an iterable was expected!')
if hasattr(iterable, '_cidrs'):
# Another IP set.
for ip in cidr_merge(_dict_keys(self._cidrs)
+ _dict_keys(iterable._cidrs)):
self._cidrs[ip] = True
else:
# An iterable contain IP addresses or subnets.
mergeable = []
for addr in iterable:
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
mergeable.append(addr)
for cidr in cidr_merge(_dict_keys(self._cidrs) + mergeable):
self._cidrs[cidr] = True
self.compact()
def clear(self):
"""Remove all IP addresses and subnets from this IP set."""
self._cidrs = {}
def __eq__(self, other):
"""
:param other: an IP set
:return: ``True`` if this IP set is equivalent to the ``other`` IP set,
``False`` otherwise.
"""
try:
return self._cidrs == other._cidrs
except AttributeError:
return NotImplemented
def __ne__(self, other):
"""
:param other: an IP set
:return: ``False`` if this IP set is equivalent to the ``other`` IP set,
``True`` otherwise.
"""
try:
return self._cidrs != other._cidrs
except AttributeError:
return NotImplemented
def __lt__(self, other):
"""
:param other: an IP set
:return: ``True`` if this IP set is less than the ``other`` IP set,
``False`` otherwise.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
return len(self) < len(other) and self.issubset(other)
def issubset(self, other):
"""
:param other: an IP set.
:return: ``True`` if every IP address and subnet in this IP set
is found within ``other``.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
l_ipv4, l_ipv6 = partition_ips(self._cidrs)
r_ipv4, r_ipv6 = partition_ips(other._cidrs)
l_ipv4_iset = _IntSet(*[(c.first, c.last) for c in l_ipv4])
r_ipv4_iset = _IntSet(*[(c.first, c.last) for c in r_ipv4])
l_ipv6_iset = _IntSet(*[(c.first, c.last) for c in l_ipv6])
r_ipv6_iset = _IntSet(*[(c.first, c.last) for c in r_ipv6])
ipv4 = l_ipv4_iset.issubset(r_ipv4_iset)
ipv6 = l_ipv6_iset.issubset(r_ipv6_iset)
return ipv4 and ipv6
__le__ = issubset
def __gt__(self, other):
"""
:param other: an IP set.
:return: ``True`` if this IP set is greater than the ``other`` IP set,
``False`` otherwise.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
return len(self) > len(other) and self.issuperset(other)
def issuperset(self, other):
"""
:param other: an IP set.
:return: ``True`` if every IP address and subnet in other IP set
is found within this one.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
l_ipv4, l_ipv6 = partition_ips(self._cidrs)
r_ipv4, r_ipv6 = partition_ips(other._cidrs)
l_ipv4_iset = _IntSet(*[(c.first, c.last) for c in l_ipv4])
r_ipv4_iset = _IntSet(*[(c.first, c.last) for c in r_ipv4])
l_ipv6_iset = _IntSet(*[(c.first, c.last) for c in l_ipv6])
r_ipv6_iset = _IntSet(*[(c.first, c.last) for c in r_ipv6])
ipv4 = l_ipv4_iset.issuperset(r_ipv4_iset)
ipv6 = l_ipv6_iset.issuperset(r_ipv6_iset)
return ipv4 and ipv6
__ge__ = issuperset
def union(self, other):
"""
:param other: an IP set.
:return: the union of this IP set and another as a new IP set
(combines IP addresses and subnets from both sets).
"""
ip_set = self.copy()
ip_set.update(other)
ip_set.compact()
return ip_set
__or__ = union
def intersection(self, other):
"""
:param other: an IP set.
:return: the intersection of this IP set and another as a new IP set.
(IP addresses and subnets common to both sets).
"""
cidr_list = []
# Separate IPv4 from IPv6.
l_ipv4, l_ipv6 = partition_ips(self._cidrs)
r_ipv4, r_ipv6 = partition_ips(other._cidrs)
# Process IPv4.
l_ipv4_iset = _IntSet(*[(c.first, c.last) for c in l_ipv4])
r_ipv4_iset = _IntSet(*[(c.first, c.last) for c in r_ipv4])
ipv4_result = l_ipv4_iset & r_ipv4_iset
for start, end in list(ipv4_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 4), IPAddress(end-1, 4))
cidr_list.extend(cidrs)
# Process IPv6.
l_ipv6_iset = _IntSet(*[(c.first, c.last) for c in l_ipv6])
r_ipv6_iset = _IntSet(*[(c.first, c.last) for c in r_ipv6])
ipv6_result = l_ipv6_iset & r_ipv6_iset
for start, end in list(ipv6_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 6), IPAddress(end-1, 6))
cidr_list.extend(cidrs)
return IPSet(cidr_list)
__and__ = intersection
def symmetric_difference(self, other):
"""
:param other: an IP set.
:return: the symmetric difference of this IP set and another as a new
IP set (all IP addresses and subnets that are in exactly one
of the sets).
"""
cidr_list = []
# Separate IPv4 from IPv6.
l_ipv4, l_ipv6 = partition_ips(self._cidrs)
r_ipv4, r_ipv6 = partition_ips(other._cidrs)
# Process IPv4.
l_ipv4_iset = _IntSet(*[(c.first, c.last) for c in l_ipv4])
r_ipv4_iset = _IntSet(*[(c.first, c.last) for c in r_ipv4])
ipv4_result = l_ipv4_iset ^ r_ipv4_iset
for start, end in list(ipv4_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 4), IPAddress(end-1, 4))
cidr_list.extend(cidrs)
# Process IPv6.
l_ipv6_iset = _IntSet(*[(c.first, c.last) for c in l_ipv6])
r_ipv6_iset = _IntSet(*[(c.first, c.last) for c in r_ipv6])
ipv6_result = l_ipv6_iset ^ r_ipv6_iset
for start, end in list(ipv6_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 6), IPAddress(end-1, 6))
cidr_list.extend(cidrs)
return IPSet(cidr_list)
__xor__ = symmetric_difference
def difference(self, other):
"""
:param other: an IP set.
:return: the difference between this IP set and another as a new IP
set (all IP addresses and subnets that are in this IP set but
not found in the other.)
"""
cidr_list = []
# Separate IPv4 from IPv6.
l_ipv4, l_ipv6 = partition_ips(self._cidrs)
r_ipv4, r_ipv6 = partition_ips(other._cidrs)
# Process IPv4.
l_ipv4_iset = _IntSet(*[(c.first, c.last) for c in l_ipv4])
r_ipv4_iset = _IntSet(*[(c.first, c.last) for c in r_ipv4])
ipv4_result = l_ipv4_iset - r_ipv4_iset
for start, end in list(ipv4_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 4), IPAddress(end-1, 4))
cidr_list.extend(cidrs)
# Process IPv6.
l_ipv6_iset = _IntSet(*[(c.first, c.last) for c in l_ipv6])
r_ipv6_iset = _IntSet(*[(c.first, c.last) for c in r_ipv6])
ipv6_result = l_ipv6_iset - r_ipv6_iset
for start, end in list(ipv6_result._ranges):
cidrs = iprange_to_cidrs(IPAddress(start, 6), IPAddress(end-1, 6))
cidr_list.extend(cidrs)
return IPSet(cidr_list)
__sub__ = difference
def __len__(self):
"""
:return: the cardinality of this IP set (i.e. sum of individual IP \
addresses). Raises ``IndexError`` if size > maxint (a Python \
limitation). Use the .size property for subnets of any size.
"""
size = self.size
if size > _sys.maxint:
raise IndexError("range contains greater than %d (maxint) " \
"IP addresses! Use the .size property instead." % _sys_maxint)
return size
@property
def size(self):
"""
The cardinality of this IP set (based on the number of individual IP
addresses including those implicitly defined in subnets).
"""
return sum([cidr.size for cidr in self._cidrs])
def __repr__(self):
""":return: Python statement to create an equivalent object"""
return 'IPSet(%r)' % [str(c) for c in sorted(self._cidrs)]
__str__ = __repr__