open-access-control/libraries/NewSoftSerial/NewSoftSerial.cpp

540 lines
14 KiB
C++
Raw Normal View History

2019-07-04 16:23:44 +00:00
/*
NewSoftSerial.cpp - Multi-instance software serial library
Copyright (c) 2006 David A. Mellis. All rights reserved.
-- Interrupt-driven receive and other improvements by ladyada
-- Tuning, circular buffer, derivation from class Print,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
// When set, _DEBUG co-opts pins 11 and 13 for debugging with an
// oscilloscope or logic analyzer. Beware: it also slightly modifies
// the bit times, so don't rely on it too much at high baud rates
#define _DEBUG 0
#define _DEBUG_PIN1 11
#define _DEBUG_PIN2 13
//
// Includes
//
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include "WConstants.h"
#include "pins_arduino.h"
#include "NewSoftSerial.h"
// Abstractions for maximum portability between processors
// These are macros to associate pins to pin change interrupts
#if !defined(digitalPinToPCICR) // Courtesy Paul Stoffregen
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
#define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 21) ? (&PCICR) : ((uint8_t *)NULL))
#define digitalPinToPCICRbit(p) (((p) <= 7) ? 2 : (((p) <= 13) ? 0 : 1))
#define digitalPinToPCMSK(p) (((p) <= 7) ? (&PCMSK2) : (((p) <= 13) ? (&PCMSK0) : (((p) <= 21) ? (&PCMSK1) : ((uint8_t *)NULL))))
#define digitalPinToPCMSKbit(p) (((p) <= 7) ? (p) : (((p) <= 13) ? ((p) - 8) : ((p) - 14)))
#else
#define digitalPinToPCICR(p) ((uint8_t *)NULL)
#define digitalPinToPCICRbit(p) 0
#define digitalPinToPCMSK(p) ((uint8_t *)NULL)
#define digitalPinToPCMSKbit(p) 0
#endif
#endif
//
// Lookup table
//
typedef struct _DELAY_TABLE
{
long baud;
unsigned short rx_delay_centering;
unsigned short rx_delay_intrabit;
unsigned short rx_delay_stopbit;
unsigned short tx_delay;
} DELAY_TABLE;
#if F_CPU == 16000000
static const DELAY_TABLE PROGMEM table[] =
{
// baud rxcenter rxintra rxstop tx
{ 115200, 1, 17, 17, 12, },
{ 57600, 10, 37, 37, 33, },
{ 38400, 25, 57, 57, 54, },
{ 31250, 31, 70, 70, 68, },
{ 28800, 34, 77, 77, 74, },
{ 19200, 54, 117, 117, 114, },
{ 14400, 74, 156, 156, 153, },
{ 9600, 114, 236, 236, 233, },
{ 4800, 233, 474, 474, 471, },
{ 2400, 471, 950, 950, 947, },
{ 1200, 947, 1902, 1902, 1899, },
{ 300, 3804, 7617, 7617, 7614, },
};
const int XMIT_START_ADJUSTMENT = 5;
#elif F_CPU == 8000000
static const DELAY_TABLE table[] PROGMEM =
{
// baud rxcenter rxintra rxstop tx
{ 115200, 1, 5, 5, 3, },
{ 57600, 1, 15, 15, 13, },
{ 38400, 2, 25, 26, 23, },
{ 31250, 7, 32, 33, 29, },
{ 28800, 11, 35, 35, 32, },
{ 19200, 20, 55, 55, 52, },
{ 14400, 30, 75, 75, 72, },
{ 9600, 50, 114, 114, 112, },
{ 4800, 110, 233, 233, 230, },
{ 2400, 229, 472, 472, 469, },
{ 1200, 467, 948, 948, 945, },
{ 300, 1895, 3805, 3805, 3802, },
};
const int XMIT_START_ADJUSTMENT = 4;
#elif F_CPU == 20000000
// 20MHz support courtesy of the good people at macegr.com.
// Thanks, Garrett!
static const DELAY_TABLE PROGMEM table[] =
{
// baud rxcenter rxintra rxstop tx
{ 115200, 3, 21, 21, 18, },
{ 57600, 20, 43, 43, 41, },
{ 38400, 37, 73, 73, 70, },
{ 31250, 45, 89, 89, 88, },
{ 28800, 46, 98, 98, 95, },
{ 19200, 71, 148, 148, 145, },
{ 14400, 96, 197, 197, 194, },
{ 9600, 146, 297, 297, 294, },
{ 4800, 296, 595, 595, 592, },
{ 2400, 592, 1189, 1189, 1186, },
{ 1200, 1187, 2379, 2379, 2376, },
{ 300, 4759, 9523, 9523, 9520, },
};
const int XMIT_START_ADJUSTMENT = 6;
#else
#error This version of NewSoftSerial supports only 20, 16 and 8MHz processors
#endif
//
// Statics
//
NewSoftSerial *NewSoftSerial::active_object = 0;
char NewSoftSerial::_receive_buffer[_NewSS_MAX_RX_BUFF];
volatile uint8_t NewSoftSerial::_receive_buffer_tail = 0;
volatile uint8_t NewSoftSerial::_receive_buffer_head = 0;
//
// Debugging
//
// This function generates a brief pulse
// for debugging or measuring on an oscilloscope.
inline void DebugPulse(uint8_t pin, uint8_t count)
{
#if _DEBUG
volatile uint8_t *pport = portOutputRegister(digitalPinToPort(pin));
uint8_t val = *pport;
while (count--)
{
*pport = val | digitalPinToBitMask(pin);
*pport = val;
}
#endif
}
//
// Private methods
//
/* static */
inline void NewSoftSerial::tunedDelay(uint16_t delay) {
uint8_t tmp=0;
asm volatile("sbiw %0, 0x01 \n\t"
"ldi %1, 0xFF \n\t"
"cpi %A0, 0xFF \n\t"
"cpc %B0, %1 \n\t"
"brne .-10 \n\t"
: "+r" (delay), "+a" (tmp)
: "0" (delay)
);
}
// This function sets the current object as the "active"
// one and returns true if it replaces another
bool NewSoftSerial::activate(void)
{
if (active_object != this)
{
_buffer_overflow = false;
uint8_t oldSREG = SREG;
cli();
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
SREG = oldSREG;
return true;
}
return false;
}
//
// The receive routine called by the interrupt handler
//
void NewSoftSerial::recv()
{
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Preserve the registers that the compiler misses
// (courtesy of Arduino forum user *etracer*)
asm volatile(
"push r18 \n\t"
"push r19 \n\t"
"push r20 \n\t"
"push r21 \n\t"
"push r22 \n\t"
"push r23 \n\t"
"push r26 \n\t"
"push r27 \n\t"
::);
#endif
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (_inverse_logic ? rx_pin_read() : !rx_pin_read())
{
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
DebugPulse(_DEBUG_PIN2, 1);
// Read each of the 8 bits
for (uint8_t i=0x1; i; i <<= 1)
{
tunedDelay(_rx_delay_intrabit);
DebugPulse(_DEBUG_PIN2, 1);
uint8_t noti = ~i;
if (rx_pin_read())
d |= i;
else // else clause added to ensure function timing is ~balanced
d &= noti;
}
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
DebugPulse(_DEBUG_PIN2, 1);
if (_inverse_logic)
d = ~d;
// if buffer full, set the overflow flag and return
if ((_receive_buffer_tail + 1) % _NewSS_MAX_RX_BUFF != _receive_buffer_head)
{
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = d; // save new byte
_receive_buffer_tail = (_receive_buffer_tail + 1) % _NewSS_MAX_RX_BUFF;
}
else
{
#if _DEBUG // for scope: pulse pin as overflow indictator
DebugPulse(_DEBUG_PIN1, 1);
#endif
_buffer_overflow = true;
}
}
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Restore the registers that the compiler misses
asm volatile(
"pop r27 \n\t"
"pop r26 \n\t"
"pop r23 \n\t"
"pop r22 \n\t"
"pop r21 \n\t"
"pop r20 \n\t"
"pop r19 \n\t"
"pop r18 \n\t"
::);
#endif
}
void NewSoftSerial::tx_pin_write(uint8_t pin_state)
{
if (pin_state == LOW)
*_transmitPortRegister &= ~_transmitBitMask;
else
*_transmitPortRegister |= _transmitBitMask;
}
uint8_t NewSoftSerial::rx_pin_read()
{
return *_receivePortRegister & _receiveBitMask;
}
//
// Interrupt handling
//
/* static */
inline void NewSoftSerial::handle_interrupt()
{
if (active_object)
{
active_object->recv();
}
}
#if defined(PCINT0_vect)
ISR(PCINT0_vect)
{
NewSoftSerial::handle_interrupt();
}
#endif
#if defined(PCINT1_vect)
ISR(PCINT1_vect)
{
NewSoftSerial::handle_interrupt();
}
#endif
#if defined(PCINT2_vect)
ISR(PCINT2_vect)
{
NewSoftSerial::handle_interrupt();
}
#endif
#if defined(PCINT3_vect)
ISR(PCINT3_vect)
{
NewSoftSerial::handle_interrupt();
}
#endif
//
// Constructor
//
NewSoftSerial::NewSoftSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic)
{
setTX(transmitPin);
setRX(receivePin);
}
//
// Destructor
//
NewSoftSerial::~NewSoftSerial()
{
end();
}
void NewSoftSerial::setTX(uint8_t tx)
{
pinMode(tx, OUTPUT);
digitalWrite(tx, HIGH);
_transmitBitMask = digitalPinToBitMask(tx);
uint8_t port = digitalPinToPort(tx);
_transmitPortRegister = portOutputRegister(port);
}
void NewSoftSerial::setRX(uint8_t rx)
{
pinMode(rx, INPUT);
if (!_inverse_logic)
digitalWrite(rx, HIGH); // pullup for normal logic!
_receivePin = rx;
_receiveBitMask = digitalPinToBitMask(rx);
uint8_t port = digitalPinToPort(rx);
_receivePortRegister = portInputRegister(port);
}
//
// Public methods
//
void NewSoftSerial::begin(long speed)
{
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
for (unsigned i=0; i<sizeof(table)/sizeof(table[0]); ++i)
{
long baud = pgm_read_dword(&table[i].baud);
if (baud == speed)
{
_rx_delay_centering = pgm_read_word(&table[i].rx_delay_centering);
_rx_delay_intrabit = pgm_read_word(&table[i].rx_delay_intrabit);
_rx_delay_stopbit = pgm_read_word(&table[i].rx_delay_stopbit);
_tx_delay = pgm_read_word(&table[i].tx_delay);
break;
}
}
// Set up RX interrupts, but only if we have a valid RX baud rate
if (_rx_delay_stopbit)
{
if (digitalPinToPCICR(_receivePin))
{
*digitalPinToPCICR(_receivePin) |= _BV(digitalPinToPCICRbit(_receivePin));
*digitalPinToPCMSK(_receivePin) |= _BV(digitalPinToPCMSKbit(_receivePin));
}
tunedDelay(_tx_delay); // if we were low this establishes the end
}
#if _DEBUG
pinMode(_DEBUG_PIN1, OUTPUT);
pinMode(_DEBUG_PIN2, OUTPUT);
#endif
activate();
}
void NewSoftSerial::end()
{
if (digitalPinToPCMSK(_receivePin))
*digitalPinToPCMSK(_receivePin) &= ~_BV(digitalPinToPCMSKbit(_receivePin));
}
// Read data from buffer
int NewSoftSerial::read(void)
{
uint8_t d;
// A newly activated object never has any rx data
if (activate())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
d = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _NewSS_MAX_RX_BUFF;
return d;
}
uint8_t NewSoftSerial::available(void)
{
// A newly activated object never has any rx data
if (activate())
return 0;
return (_receive_buffer_tail + _NewSS_MAX_RX_BUFF - _receive_buffer_head) % _NewSS_MAX_RX_BUFF;
}
void NewSoftSerial::write(uint8_t b)
{
if (_tx_delay == 0)
return;
activate();
uint8_t oldSREG = SREG;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
tx_pin_write(_inverse_logic ? HIGH : LOW);
tunedDelay(_tx_delay + XMIT_START_ADJUSTMENT);
// Write each of the 8 bits
if (_inverse_logic)
{
for (byte mask = 0x01; mask; mask <<= 1)
{
if (b & mask) // choose bit
tx_pin_write(LOW); // send 1
else
tx_pin_write(HIGH); // send 0
tunedDelay(_tx_delay);
}
tx_pin_write(LOW); // restore pin to natural state
}
else
{
for (byte mask = 0x01; mask; mask <<= 1)
{
if (b & mask) // choose bit
tx_pin_write(HIGH); // send 1
else
tx_pin_write(LOW); // send 0
tunedDelay(_tx_delay);
}
tx_pin_write(HIGH); // restore pin to natural state
}
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay);
}
#if !defined(cbi)
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
void NewSoftSerial::enable_timer0(bool enable)
{
if (enable)
#if defined(__AVR_ATmega8__)
sbi(TIMSK, TOIE0);
#else
sbi(TIMSK0, TOIE0);
#endif
else
#if defined(__AVR_ATmega8__)
cbi(TIMSK, TOIE0);
#else
cbi(TIMSK0, TOIE0);
#endif
}
void NewSoftSerial::flush()
{
if (active_object == this)
{
uint8_t oldSREG = SREG;
cli();
_receive_buffer_head = _receive_buffer_tail = 0;
SREG = oldSREG;
}
}