Add and update scripts, finished Sumter
This commit is contained in:
parent
0cea39bc1d
commit
ec0e4a6efb
10
README.md
10
README.md
@ -4,8 +4,8 @@ See [https://wiki.openstreetmap.org/wiki/The_Villages_Road_and_Address_Import](h
|
||||
|
||||
## Data
|
||||
|
||||
Lake County: https://c.lakecountyfl.gov/ftp/GIS/GisDownloads/Shapefiles/
|
||||
Sumter GIS is via emailing their GIS team and accessing their Dropbox.
|
||||
- Lake County Streets and Address Points: https://c.lakecountyfl.gov/ftp/GIS/GisDownloads/Shapefiles/
|
||||
- Sumter GIS Road Centerlines, Addresses, and Multi Modal Trails is via emailing their GIS team and accessing their Dropbox (https://www.dropbox.com/scl/fo/67nh5y8e42tr2kzdmmcg4/AAsF7Ay0MRUN-e_Ajlh5yWQ?rlkey=h6u606av0d2zkszk9lm3qijlt&e=1&st=7j7i94f8&dl=0)
|
||||
|
||||
## Instructions
|
||||
|
||||
@ -16,6 +16,7 @@ Sumter GIS is via emailing their GIS team and accessing their Dropbox.
|
||||
|
||||
### For Sumter County:
|
||||
|
||||
* Always use the Filter with Form function to Select all entries with `"LIFECYCLE"='Current'`
|
||||
* For roads:
|
||||
* `NAME` becomes the virtual `name` via the `title(formatstreet("NAME"))`
|
||||
* `SpeedLimit` becomes the virtual `maxspeed` via `concat("SpeedLimit",' mph')`
|
||||
@ -30,6 +31,8 @@ Sumter GIS is via emailing their GIS team and accessing their Dropbox.
|
||||
* `POST_CODE` becomes `addr:postcode` (or `addr:postc` temporarily) as an integer
|
||||
* Manually add `addr:state` = `'FL'`
|
||||
* For multi-modal trails (golf cart paths):
|
||||
* Download all highway=path and highway=cycleway with golf_cart=yes for comparison
|
||||
* Omit `Part_of_Ro`=`Yes` as separate paths; apply golf cart tagging to the streets directly.
|
||||
* `bicycle=yes`
|
||||
* `foot=yes`
|
||||
* `golf=cartpath`
|
||||
@ -38,7 +41,6 @@ Sumter GIS is via emailing their GIS team and accessing their Dropbox.
|
||||
* `motor_vehicle=no`
|
||||
* `segregated=no`
|
||||
* `surface=asphalt`
|
||||
* Use the Filter with Form function to Select all entries with `"LIFECYCLE"='Current'`
|
||||
|
||||
### For Lake County:
|
||||
|
||||
@ -63,7 +65,7 @@ Sumter GIS is via emailing their GIS team and accessing their Dropbox.
|
||||
* Export to Geojson, only exporting **selected** entries, **selecting only the OSM-formatted fields we want**.
|
||||
* Here you can rename temporary columns like `addr:house` to `addr:housenumber`.
|
||||
* Ensure the export file is in the `EPSG:4326 - WGS84` CRS.
|
||||
* Open in JSOM. It's suggested to begin with roads first, addresses second, so the addresses can be placed in context.
|
||||
* Open in JOSM. It's suggested to begin with roads first, addresses second, so the addresses can be placed in context.
|
||||
* In the Roads dataset, select and remove all relations from the geojson/shapefile layer: the data often has one relation per road and this is improper for OSM import.
|
||||
* Select a small region to work on: one neighborhood or smaller. For this import, we are assuming that only newly-constructed small residential areas will be imported, not main roads or commercial areas or areas with significant existing map data.
|
||||
* Download the area you're working on from OSM, into a new Data Layer (not your geojson layer.)
|
||||
|
1196
original data/Sumter/Multi_Model_Trails_020325.geojson
Normal file
1196
original data/Sumter/Multi_Model_Trails_020325.geojson
Normal file
File diff suppressed because one or more lines are too long
111222
processed data/Sumter/addresses-250415.geojson
Normal file
111222
processed data/Sumter/addresses-250415.geojson
Normal file
File diff suppressed because it is too large
Load Diff
359
processed data/Sumter/diff-sumter-cartpaths-20250725.geojson
Normal file
359
processed data/Sumter/diff-sumter-cartpaths-20250725.geojson
Normal file
File diff suppressed because one or more lines are too long
61613
processed data/Sumter/osm-cartpaths-20250725.geojson
Normal file
61613
processed data/Sumter/osm-cartpaths-20250725.geojson
Normal file
File diff suppressed because it is too large
Load Diff
@ -8,12 +8,19 @@ import re
|
||||
# or >1 suffix-letters, like 12th Street or 243rd Ave.
|
||||
#
|
||||
|
||||
def title(s):
|
||||
return re.sub(
|
||||
r"[A-Za-z0-9]+('[A-Za-z0-9]+)?",
|
||||
lambda word: word.group(0).capitalize(),
|
||||
s)
|
||||
|
||||
# @qgsfunction(args='auto', group='Custom', referenced_columns=[])
|
||||
def getstreetfromaddress(value1, feature, parent):
|
||||
parts = value1.split()
|
||||
parts.pop(0) # Ignore the first bit (i.e. "123" in "123 N MAIN ST")
|
||||
parts = map(formatstreetname, parts)
|
||||
return " ".join(parts)
|
||||
#parts = map(formatstreetname, parts)
|
||||
#return " ".join(parts)
|
||||
return formatstreet(" ".join(parts), None, None)
|
||||
|
||||
# @qgsfunction(args='auto', group='Custom', referenced_columns=[])
|
||||
def formatstreet(value1, feature, parent):
|
||||
@ -26,10 +33,12 @@ def formatstreet(value1, feature, parent):
|
||||
parts[0] = "Royal"
|
||||
parts[1] = "Saint"
|
||||
# And "CR" as a first part (County Road) vs last part (Circle)
|
||||
if parts[0].upper() == "C ":
|
||||
parts[0] = "County Road "
|
||||
if parts[0].upper() == "CR":
|
||||
parts[0] = "County Road"
|
||||
if parts[0].upper() == "SR":
|
||||
parts[0] = "State Route"
|
||||
parts[0] = "State Road"
|
||||
parts = map(formatstreetname, parts)
|
||||
return " ".join(parts)
|
||||
|
||||
|
@ -1,5 +1,75 @@
|
||||
import geopandas
|
||||
df = geopandas.read_file('original data/Sumter/RoadCenterlines_041125.shp.zip')
|
||||
df = df.to_crs(4326) # Convert to WGS 84
|
||||
exploded = df.explode()
|
||||
exploded.to_file('original data/Sumter/RoadCenterlines_041125.geojson', driver='GeoJSON')
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def convert_shapefile_to_geojson(
|
||||
input_shapefile,
|
||||
output_geojson,
|
||||
target_crs=4326 # Convert to WGS 84
|
||||
):
|
||||
"""
|
||||
Main conversion function
|
||||
|
||||
Args:
|
||||
input_shapefile: Path to input shapefile
|
||||
output_geojson: Path to output GeoJSON file
|
||||
target_crs: Target coordinate reference system
|
||||
"""
|
||||
try:
|
||||
# Read shapefile
|
||||
print(f"Reading shapefile: {input_shapefile}")
|
||||
df = geopandas.read_file(input_shapefile)
|
||||
print(f"Converting to CRS {target_crs}")
|
||||
df = df.to_crs(target_crs)
|
||||
exploded = df.explode()
|
||||
exploded.to_file(output_geojson, driver='GeoJSON')
|
||||
except Exception as e:
|
||||
print(f"Error during conversion: {str(e)}")
|
||||
sys.exit(1)
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function to handle command line arguments
|
||||
"""
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert shapefile to GeoJSON'
|
||||
)
|
||||
parser.add_argument(
|
||||
'input_shapefile',
|
||||
help='Path to input shapefile'
|
||||
)
|
||||
parser.add_argument(
|
||||
'output_geojson',
|
||||
help='Path to output GeoJSON file'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--target-crs',
|
||||
default='4326',
|
||||
help='Target coordinate reference system (default: 4326)'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input file
|
||||
if not os.path.exists(args.input_shapefile):
|
||||
print(f"Error: Input shapefile '{args.input_shapefile}' not found")
|
||||
sys.exit(1)
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
output_dir = Path(args.output_geojson).parent
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Run conversion
|
||||
convert_shapefile_to_geojson(
|
||||
args.input_shapefile,
|
||||
args.output_geojson,
|
||||
args.target_crs
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import pandas as pd
|
||||
main()
|
258
sumter-address-convert.py
Normal file
258
sumter-address-convert.py
Normal file
@ -0,0 +1,258 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Shapefile to GeoJSON Converter for Address Data
|
||||
Converts ESRI:102659 CRS shapefile to EPSG:4326 GeoJSON with OSM-style address tags
|
||||
"""
|
||||
|
||||
import geopandas as gpd
|
||||
import json
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import importlib
|
||||
qgis_functions = importlib.import_module("qgis-functions")
|
||||
title = qgis_functions.title
|
||||
getstreetfromaddress = qgis_functions.getstreetfromaddress
|
||||
|
||||
def convert_crs(gdf, source_crs='ESRI:102659', target_crs='EPSG:4326'):
|
||||
"""
|
||||
Convert coordinate reference system from source to target CRS
|
||||
|
||||
Args:
|
||||
gdf: GeoDataFrame to convert
|
||||
source_crs: Source coordinate reference system (default: ESRI:102659)
|
||||
target_crs: Target coordinate reference system (default: EPSG:4326)
|
||||
|
||||
Returns:
|
||||
GeoDataFrame with converted CRS
|
||||
"""
|
||||
if gdf.crs is None:
|
||||
print(f"Warning: No CRS detected, assuming {source_crs}")
|
||||
gdf.crs = source_crs
|
||||
|
||||
if gdf.crs != target_crs:
|
||||
print(f"Converting from {gdf.crs} to {target_crs}")
|
||||
gdf = gdf.to_crs(target_crs)
|
||||
|
||||
return gdf
|
||||
|
||||
def process_address_fields(gdf):
|
||||
"""
|
||||
Process and map address fields according to OSM address schema
|
||||
|
||||
Args:
|
||||
gdf: GeoDataFrame with address data
|
||||
|
||||
Returns:
|
||||
GeoDataFrame with processed address fields
|
||||
"""
|
||||
processed_gdf = gdf.copy()
|
||||
|
||||
# Create new columns for OSM address tags
|
||||
address_mapping = {}
|
||||
|
||||
# ADD_NUM -> addr:housenumber (as integer)
|
||||
if 'ADD_NUM' in processed_gdf.columns:
|
||||
# Handle NaN values and convert to nullable integer
|
||||
add_num_series = processed_gdf['ADD_NUM'].copy()
|
||||
# Convert to numeric, coercing errors to NaN
|
||||
add_num_series = pd.to_numeric(add_num_series, errors='coerce')
|
||||
# Round to remove decimal places, then convert to nullable integer
|
||||
address_mapping['addr:housenumber'] = add_num_series.round().astype('Int64')
|
||||
|
||||
# UNIT -> addr:unit (as string)
|
||||
if 'UNIT' in processed_gdf.columns:
|
||||
unit_series = processed_gdf['UNIT'].copy()
|
||||
# Replace NaN, empty strings, and 'None' string with actual None
|
||||
unit_series = unit_series.replace(['nan', 'None', '', None], None)
|
||||
# Only keep non-null values as strings
|
||||
unit_series = unit_series.where(unit_series.notna(), None)
|
||||
address_mapping['addr:unit'] = unit_series
|
||||
|
||||
# SADD -> addr:street via title(getstreetfromaddress("SADD"))
|
||||
if 'SADD' in processed_gdf.columns:
|
||||
street_names = []
|
||||
for sadd_value in processed_gdf['SADD']:
|
||||
if pd.notna(sadd_value):
|
||||
street_from_addr = getstreetfromaddress(str(sadd_value), None, None)
|
||||
street_titled = title(street_from_addr)
|
||||
street_names.append(street_titled)
|
||||
else:
|
||||
street_names.append(None)
|
||||
address_mapping['addr:street'] = street_names
|
||||
|
||||
# POST_COMM -> addr:city via title("POST_COMM")
|
||||
if 'POST_COMM' in processed_gdf.columns:
|
||||
city_names = []
|
||||
for post_comm in processed_gdf['POST_COMM']:
|
||||
if pd.notna(post_comm):
|
||||
city_titled = title(str(post_comm))
|
||||
city_names.append(city_titled)
|
||||
else:
|
||||
city_names.append(None)
|
||||
address_mapping['addr:city'] = city_names
|
||||
|
||||
# POST_CODE -> addr:postcode (as integer)
|
||||
if 'POST_CODE' in processed_gdf.columns:
|
||||
# Handle NaN values and convert to nullable integer
|
||||
post_code_series = processed_gdf['POST_CODE'].copy()
|
||||
# Convert to numeric, coercing errors to NaN
|
||||
post_code_series = pd.to_numeric(post_code_series, errors='coerce')
|
||||
# Round to remove decimal places, then convert to nullable integer
|
||||
address_mapping['addr:postcode'] = post_code_series.round().astype('Int64')
|
||||
|
||||
# Manually add addr:state = 'FL'
|
||||
address_mapping['addr:state'] = 'FL'
|
||||
|
||||
# Add the new address columns to the GeoDataFrame
|
||||
for key, value in address_mapping.items():
|
||||
processed_gdf[key] = value
|
||||
|
||||
return processed_gdf
|
||||
|
||||
def clean_output_data(gdf, keep_original_fields=False):
|
||||
"""
|
||||
Clean the output data, optionally keeping original fields
|
||||
|
||||
Args:
|
||||
gdf: GeoDataFrame to clean
|
||||
keep_original_fields: Whether to keep original shapefile fields
|
||||
|
||||
Returns:
|
||||
Cleaned GeoDataFrame
|
||||
"""
|
||||
# Define the OSM address fields we want to keep
|
||||
osm_fields = [
|
||||
'addr:housenumber', 'addr:unit', 'addr:street',
|
||||
'addr:city', 'addr:postcode', 'addr:state'
|
||||
]
|
||||
|
||||
if keep_original_fields:
|
||||
# Keep both original and OSM fields
|
||||
original_fields = ['ADD_NUM', 'UNIT', 'SADD', 'POST_COMM', 'POST_CODE']
|
||||
fields_to_keep = list(set(osm_fields + original_fields + ['geometry']))
|
||||
else:
|
||||
# Keep only OSM fields and geometry
|
||||
fields_to_keep = osm_fields + ['geometry']
|
||||
|
||||
# Filter to only existing columns
|
||||
existing_fields = [field for field in fields_to_keep if field in gdf.columns]
|
||||
|
||||
return gdf[existing_fields]
|
||||
|
||||
def convert_shapefile_to_geojson(
|
||||
input_shapefile,
|
||||
output_geojson,
|
||||
keep_original_fields=False,
|
||||
source_crs='ESRI:102659',
|
||||
target_crs='EPSG:4326'
|
||||
):
|
||||
"""
|
||||
Main conversion function
|
||||
|
||||
Args:
|
||||
input_shapefile: Path to input shapefile
|
||||
output_geojson: Path to output GeoJSON file
|
||||
keep_original_fields: Whether to keep original shapefile fields
|
||||
source_crs: Source coordinate reference system
|
||||
target_crs: Target coordinate reference system
|
||||
"""
|
||||
try:
|
||||
# Read shapefile
|
||||
print(f"Reading shapefile: {input_shapefile}")
|
||||
gdf = gpd.read_file(input_shapefile)
|
||||
print(f"Loaded {len(gdf)} features")
|
||||
|
||||
# Display original columns
|
||||
print(f"Original columns: {list(gdf.columns)}")
|
||||
|
||||
# Convert CRS if needed
|
||||
gdf = convert_crs(gdf, source_crs, target_crs)
|
||||
|
||||
# Process address fields
|
||||
print("Processing address fields...")
|
||||
gdf = process_address_fields(gdf)
|
||||
|
||||
# Clean output data
|
||||
gdf = clean_output_data(gdf, keep_original_fields)
|
||||
|
||||
# Remove rows with no valid geometry
|
||||
gdf = gdf[gdf.geometry.notna()]
|
||||
|
||||
print(f"Final columns: {list(gdf.columns)}")
|
||||
print(f"Final feature count: {len(gdf)}")
|
||||
|
||||
# Write to GeoJSON
|
||||
print(f"Writing GeoJSON: {output_geojson}")
|
||||
gdf.to_file(output_geojson, driver='GeoJSON')
|
||||
|
||||
print(f"Conversion completed successfully!")
|
||||
|
||||
# Display sample of processed data
|
||||
if len(gdf) > 0:
|
||||
print("\nSample of processed data:")
|
||||
sample_cols = [col for col in gdf.columns if col.startswith('addr:')]
|
||||
if sample_cols:
|
||||
print(gdf[sample_cols].head())
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during conversion: {str(e)}")
|
||||
sys.exit(1)
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function to handle command line arguments
|
||||
"""
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert shapefile to GeoJSON with OSM address tags'
|
||||
)
|
||||
parser.add_argument(
|
||||
'input_shapefile',
|
||||
help='Path to input shapefile'
|
||||
)
|
||||
parser.add_argument(
|
||||
'output_geojson',
|
||||
help='Path to output GeoJSON file'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--keep-original',
|
||||
action='store_true',
|
||||
help='Keep original shapefile fields in addition to OSM fields'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--source-crs',
|
||||
default='ESRI:102659',
|
||||
help='Source coordinate reference system (default: ESRI:102659)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--target-crs',
|
||||
default='EPSG:4326',
|
||||
help='Target coordinate reference system (default: EPSG:4326)'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input file
|
||||
if not os.path.exists(args.input_shapefile):
|
||||
print(f"Error: Input shapefile '{args.input_shapefile}' not found")
|
||||
sys.exit(1)
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
output_dir = Path(args.output_geojson).parent
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Run conversion
|
||||
convert_shapefile_to_geojson(
|
||||
args.input_shapefile,
|
||||
args.output_geojson,
|
||||
args.keep_original,
|
||||
args.source_crs,
|
||||
args.target_crs
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import pandas as pd
|
||||
main()
|
540
sumter-multi-modal-convert.py
Normal file
540
sumter-multi-modal-convert.py
Normal file
@ -0,0 +1,540 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
GeoJSON Multi Modal Golf Cart Path Comparison Script
|
||||
|
||||
Compares two GeoJSON files containing road data and identifies:
|
||||
1. Roads in file1 that don't have corresponding coverage in file2 (removed roads)
|
||||
2. Roads in file2 that don't have corresponding coverage in file1 (added roads)
|
||||
|
||||
Only reports differences that are significant (above minimum length threshold).
|
||||
Optimized for performance with parallel processing and spatial indexing.
|
||||
|
||||
TODO:
|
||||
- put properties properly on removed roads, so they're visible in JOSM
|
||||
- handle polygons properly (on previous geojson step?) for circular roads
|
||||
"""
|
||||
|
||||
import json
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Any, Tuple
|
||||
import geopandas as gpd
|
||||
from shapely.geometry import LineString, MultiLineString, Point, Polygon
|
||||
from shapely.ops import unary_union
|
||||
from shapely.strtree import STRtree
|
||||
import pandas as pd
|
||||
import warnings
|
||||
import multiprocessing as mp
|
||||
from functools import partial
|
||||
import numpy as np
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
import gc
|
||||
|
||||
# Suppress warnings for cleaner output
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
class RoadComparator:
|
||||
def __init__(self, tolerance_feet: float = 50.0, min_gap_length_feet: float = 100.0,
|
||||
n_jobs: int = None, chunk_size: int = 1000):
|
||||
"""
|
||||
Initialize the road comparator.
|
||||
|
||||
Args:
|
||||
tolerance_feet: Distance tolerance for considering roads as overlapping (default: 50 feet)
|
||||
min_gap_length_feet: Minimum length of gap/extra to be considered significant (default: 100 feet)
|
||||
n_jobs: Number of parallel processes to use (default: CPU count - 1)
|
||||
chunk_size: Number of geometries to process per chunk (default: 1000)
|
||||
"""
|
||||
self.tolerance_feet = tolerance_feet
|
||||
self.min_gap_length_feet = min_gap_length_feet
|
||||
self.n_jobs = n_jobs or max(1, mp.cpu_count() - 1)
|
||||
self.chunk_size = chunk_size
|
||||
|
||||
# Convert feet to degrees (approximate conversion for continental US)
|
||||
# 1 degree latitude ≈ 364,000 feet
|
||||
# 1 degree longitude ≈ 288,000 feet (at 40° latitude)
|
||||
self.tolerance_deg = tolerance_feet / 364000.0
|
||||
self.min_gap_length_deg = min_gap_length_feet / 364000.0
|
||||
|
||||
print(f"Using {self.n_jobs} parallel processes with chunk size {self.chunk_size}")
|
||||
|
||||
def load_geojson(self, filepath: str) -> gpd.GeoDataFrame:
|
||||
"""Load and validate GeoJSON file with optimizations."""
|
||||
try:
|
||||
# Use pyogr engine for faster loading of large files
|
||||
gdf = gpd.read_file(filepath, engine='pyogrio')
|
||||
|
||||
# Filter only LineString, MultiLineString, and Polygon geometries
|
||||
line_types = ['LineString', 'MultiLineString', 'Polygon']
|
||||
gdf = gdf[gdf.geometry.type.isin(line_types)].copy()
|
||||
|
||||
if len(gdf) == 0:
|
||||
raise ValueError(f"No line geometries found in {filepath}")
|
||||
|
||||
# Reset index for efficient processing
|
||||
gdf = gdf.reset_index(drop=True)
|
||||
|
||||
# Ensure geometry is valid and fix simple issues
|
||||
invalid_mask = ~gdf.geometry.is_valid
|
||||
if invalid_mask.any():
|
||||
print(f"Fixing {invalid_mask.sum()} invalid geometries...")
|
||||
gdf.loc[invalid_mask, 'geometry'] = gdf.loc[invalid_mask, 'geometry'].buffer(0)
|
||||
|
||||
print(f"Loaded {len(gdf)} road features from {filepath}")
|
||||
return gdf
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(f"Error loading {filepath}: {str(e)}")
|
||||
|
||||
def create_buffered_union_optimized(self, gdf: gpd.GeoDataFrame) -> Any:
|
||||
"""Create a buffered union using chunked processing for memory efficiency."""
|
||||
print("Creating optimized buffered union...")
|
||||
|
||||
# Process in chunks to manage memory
|
||||
chunks = [gdf.iloc[i:i+self.chunk_size] for i in range(0, len(gdf), self.chunk_size)]
|
||||
chunk_unions = []
|
||||
|
||||
# Use partial function for multiprocessing
|
||||
buffer_func = partial(self._buffer_chunk, tolerance=self.tolerance_deg)
|
||||
|
||||
with ProcessPoolExecutor(max_workers=self.n_jobs) as executor:
|
||||
# Submit all chunk processing jobs
|
||||
future_to_chunk = {executor.submit(buffer_func, chunk): i
|
||||
for i, chunk in enumerate(chunks)}
|
||||
|
||||
# Collect results as they complete
|
||||
for future in as_completed(future_to_chunk):
|
||||
chunk_idx = future_to_chunk[future]
|
||||
try:
|
||||
chunk_union = future.result()
|
||||
if chunk_union and not chunk_union.is_empty:
|
||||
chunk_unions.append(chunk_union)
|
||||
print(f"Processed chunk {chunk_idx + 1}/{len(chunks)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing chunk {chunk_idx}: {str(e)}")
|
||||
|
||||
# Union all chunk results
|
||||
print("Combining chunk unions...")
|
||||
if chunk_unions:
|
||||
final_union = unary_union(chunk_unions)
|
||||
# Force garbage collection
|
||||
del chunk_unions
|
||||
gc.collect()
|
||||
return final_union
|
||||
else:
|
||||
raise Exception("No valid geometries to create union")
|
||||
|
||||
@staticmethod
|
||||
def _buffer_chunk(chunk_gdf: gpd.GeoDataFrame, tolerance: float) -> Any:
|
||||
"""Buffer geometries in a chunk and return their union."""
|
||||
try:
|
||||
# Buffer all geometries in the chunk
|
||||
buffered = chunk_gdf.geometry.buffer(tolerance)
|
||||
|
||||
# Create union of buffered geometries
|
||||
if len(buffered) == 1:
|
||||
return buffered.iloc[0]
|
||||
else:
|
||||
return unary_union(buffered.tolist())
|
||||
except Exception as e:
|
||||
print(f"Error in chunk processing: {str(e)}")
|
||||
return None
|
||||
|
||||
def create_spatial_index(self, gdf: gpd.GeoDataFrame) -> STRtree:
|
||||
"""Create spatial index for fast intersection queries."""
|
||||
print("Creating spatial index...")
|
||||
# Create STRtree for fast spatial queries
|
||||
geometries = gdf.geometry.tolist()
|
||||
return STRtree(geometries)
|
||||
|
||||
def find_removed_segments_optimized(self, source_gdf: gpd.GeoDataFrame,
|
||||
target_union: Any) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Find segments in source_gdf that are not covered by target_union (removed roads).
|
||||
Optimized with parallel processing.
|
||||
"""
|
||||
print("Finding removed segments...")
|
||||
|
||||
# Split into chunks for parallel processing
|
||||
chunks = [source_gdf.iloc[i:i+self.chunk_size]
|
||||
for i in range(0, len(source_gdf), self.chunk_size)]
|
||||
|
||||
all_removed = []
|
||||
|
||||
# Use partial function for multiprocessing
|
||||
process_func = partial(self._process_removed_chunk,
|
||||
target_union=target_union,
|
||||
min_length_deg=self.min_gap_length_deg)
|
||||
|
||||
with ProcessPoolExecutor(max_workers=self.n_jobs) as executor:
|
||||
# Submit all chunk processing jobs
|
||||
future_to_chunk = {executor.submit(process_func, chunk): i
|
||||
for i, chunk in enumerate(chunks)}
|
||||
|
||||
# Collect results as they complete
|
||||
for future in as_completed(future_to_chunk):
|
||||
chunk_idx = future_to_chunk[future]
|
||||
try:
|
||||
chunk_removed = future.result()
|
||||
all_removed.extend(chunk_removed)
|
||||
print(f"Processed removed chunk {chunk_idx + 1}/{len(chunks)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing removed chunk {chunk_idx}: {str(e)}")
|
||||
|
||||
return all_removed
|
||||
|
||||
@staticmethod
|
||||
def _process_removed_chunk(chunk_gdf: gpd.GeoDataFrame, target_union: Any,
|
||||
min_length_deg: float) -> List[Dict[str, Any]]:
|
||||
"""Process a chunk of geometries to find removed segments."""
|
||||
removed_segments = []
|
||||
|
||||
for idx, row in chunk_gdf.iterrows():
|
||||
geom = row.geometry
|
||||
|
||||
# Handle MultiLineString by processing each component
|
||||
if isinstance(geom, MultiLineString):
|
||||
lines = list(geom.geoms)
|
||||
else:
|
||||
lines = [geom] # Polygon and Line can be accessed directly
|
||||
|
||||
for line in lines:
|
||||
try:
|
||||
# Find parts of the line that don't intersect with target_union
|
||||
uncovered = line.difference(target_union)
|
||||
|
||||
if uncovered.is_empty:
|
||||
continue
|
||||
|
||||
# Handle different geometry types returned by difference
|
||||
uncovered_lines = []
|
||||
if hasattr(uncovered, 'geoms'):
|
||||
for geom_part in uncovered.geoms:
|
||||
if isinstance(geom_part, LineString):
|
||||
uncovered_lines.append(geom_part)
|
||||
elif isinstance(uncovered, LineString):
|
||||
uncovered_lines.append(uncovered)
|
||||
|
||||
# Check each uncovered line segment
|
||||
for uncovered_line in uncovered_lines:
|
||||
if uncovered_line.length >= min_length_deg:
|
||||
# Create properties dict with original metadata plus 'removed: true'
|
||||
properties = dict(row.drop('geometry'))
|
||||
properties['removed'] = True
|
||||
|
||||
removed_segments.append({
|
||||
'geometry': uncovered_line,
|
||||
**properties
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
continue # Skip problematic geometries
|
||||
|
||||
return removed_segments
|
||||
|
||||
def find_added_roads_optimized(self, source_gdf: gpd.GeoDataFrame,
|
||||
target_union: Any) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Find entire roads in source_gdf that don't significantly overlap with target_union.
|
||||
Optimized with parallel processing.
|
||||
"""
|
||||
print("Finding added roads...")
|
||||
|
||||
# Split into chunks for parallel processing
|
||||
chunks = [source_gdf.iloc[i:i+self.chunk_size]
|
||||
for i in range(0, len(source_gdf), self.chunk_size)]
|
||||
|
||||
all_added = []
|
||||
|
||||
# Use partial function for multiprocessing
|
||||
process_func = partial(self._process_added_chunk,
|
||||
target_union=target_union,
|
||||
min_length_deg=self.min_gap_length_deg)
|
||||
|
||||
with ProcessPoolExecutor(max_workers=self.n_jobs) as executor:
|
||||
# Submit all chunk processing jobs
|
||||
future_to_chunk = {executor.submit(process_func, chunk): i
|
||||
for i, chunk in enumerate(chunks)}
|
||||
|
||||
# Collect results as they complete
|
||||
for future in as_completed(future_to_chunk):
|
||||
chunk_idx = future_to_chunk[future]
|
||||
try:
|
||||
chunk_added = future.result()
|
||||
all_added.extend(chunk_added)
|
||||
print(f"Processed added chunk {chunk_idx + 1}/{len(chunks)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing added chunk {chunk_idx}: {str(e)}")
|
||||
|
||||
return all_added
|
||||
|
||||
@staticmethod
|
||||
def _process_added_chunk(chunk_gdf: gpd.GeoDataFrame, target_union: Any,
|
||||
min_length_deg: float) -> List[Dict[str, Any]]:
|
||||
"""Process a chunk of geometries to find added roads."""
|
||||
added_roads = []
|
||||
|
||||
for idx, row in chunk_gdf.iterrows():
|
||||
geom = row.geometry
|
||||
|
||||
try:
|
||||
# Check what portion of the road is not covered
|
||||
uncovered = geom.difference(target_union)
|
||||
|
||||
if not uncovered.is_empty:
|
||||
# Calculate what percentage of the original road is uncovered
|
||||
uncovered_length = 0
|
||||
if hasattr(uncovered, 'geoms'):
|
||||
for geom_part in uncovered.geoms:
|
||||
if isinstance(geom_part, LineString):
|
||||
uncovered_length += geom_part.length
|
||||
elif isinstance(uncovered, LineString):
|
||||
uncovered_length = uncovered.length
|
||||
|
||||
original_length = geom.length
|
||||
uncovered_ratio = uncovered_length / original_length if original_length > 0 else 0
|
||||
|
||||
# Include the entire road if:
|
||||
# 1. The uncovered portion is above minimum threshold, AND
|
||||
# 2. More than 10% of the road is uncovered
|
||||
if uncovered_ratio > 0.1:
|
||||
#uncovered_length >= min_length_deg and
|
||||
# Include entire original road with all original metadata
|
||||
original_properties = dict(row.drop('geometry'))
|
||||
|
||||
#
|
||||
# For Sumter County Roads
|
||||
#
|
||||
properties = {
|
||||
'surface': 'asphalt'
|
||||
}
|
||||
|
||||
output = True
|
||||
|
||||
for key, value in original_properties.items():
|
||||
if key == 'Part_of_Ro' and value == "Yes":
|
||||
output = False
|
||||
continue # Skip cart paths that are parts of roads
|
||||
else:
|
||||
properties['highway'] = 'residential'
|
||||
properties['bicycle'] = 'yes'
|
||||
properties['foot'] = 'yes'
|
||||
properties['golf'] = 'cartpath'
|
||||
properties['golf_cart'] = 'yes'
|
||||
properties['highway'] = 'path'
|
||||
properties['motor_vehicle'] = 'no'
|
||||
properties['segregated'] = 'no'
|
||||
properties['surface'] = 'asphalt'
|
||||
|
||||
if output:
|
||||
added_roads.append({
|
||||
'geometry': geom,
|
||||
**properties
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
continue # Skip problematic geometries
|
||||
|
||||
return added_roads
|
||||
|
||||
def compare_roads(self, file1_path: str, file2_path: str) -> Tuple[List[Dict], List[Dict]]:
|
||||
"""
|
||||
Compare two GeoJSON files and find significant differences.
|
||||
Optimized version with parallel processing.
|
||||
|
||||
Returns:
|
||||
Tuple of (removed_roads, added_roads)
|
||||
"""
|
||||
print(f"Comparing {file1_path} and {file2_path}")
|
||||
print(f"Tolerance: {self.tolerance_feet} feet")
|
||||
print(f"Minimum significant length: {self.min_gap_length_feet} feet")
|
||||
print(f"Parallel processing: {self.n_jobs} workers")
|
||||
print("-" * 50)
|
||||
|
||||
# Load both files
|
||||
gdf1 = self.load_geojson(file1_path)
|
||||
gdf2 = self.load_geojson(file2_path)
|
||||
|
||||
# Ensure both are in the same CRS
|
||||
if gdf1.crs != gdf2.crs:
|
||||
print(f"Warning: CRS mismatch. Converting {file2_path} to match {file1_path}")
|
||||
gdf2 = gdf2.to_crs(gdf1.crs)
|
||||
|
||||
print("Creating optimized spatial unions...")
|
||||
|
||||
# Create buffered unions using optimized method
|
||||
union1 = self.create_buffered_union_optimized(gdf1)
|
||||
union2 = self.create_buffered_union_optimized(gdf2)
|
||||
|
||||
print("Finding removed and added roads with parallel processing...")
|
||||
|
||||
# Find roads using optimized parallel methods
|
||||
removed_roads = self.find_removed_segments_optimized(gdf1, union2)
|
||||
added_roads = self.find_added_roads_optimized(gdf2, union1)
|
||||
|
||||
# Clean up memory
|
||||
del gdf1, gdf2, union1, union2
|
||||
gc.collect()
|
||||
|
||||
return removed_roads, added_roads
|
||||
|
||||
def save_results(self, removed: List[Dict], added: List[Dict], output_path: str):
|
||||
"""Save results to GeoJSON file."""
|
||||
all_results = removed + added
|
||||
|
||||
if not all_results:
|
||||
print("No significant differences found!")
|
||||
return
|
||||
|
||||
# Create GeoDataFrame efficiently
|
||||
print("Saving results...")
|
||||
results_gdf = gpd.GeoDataFrame(all_results)
|
||||
|
||||
# Save to file with optimization
|
||||
results_gdf.to_file(output_path, driver='GeoJSON', engine='pyogrio')
|
||||
print(f"Results saved to: {output_path}")
|
||||
|
||||
def print_summary(self, removed: List[Dict], added: List[Dict], file1_name: str, file2_name: str):
|
||||
"""Print a summary of the comparison results."""
|
||||
print("\n" + "="*60)
|
||||
print("COMPARISON SUMMARY")
|
||||
print("="*60)
|
||||
|
||||
print(f"\nFile 1: {file1_name}")
|
||||
print(f"File 2: {file2_name}")
|
||||
print(f"Tolerance: {self.tolerance_feet} feet")
|
||||
print(f"Minimum significant length: {self.min_gap_length_feet} feet")
|
||||
|
||||
if removed:
|
||||
print(f"\n🔴 REMOVED ROADS ({len(removed)} segments):")
|
||||
print("These road segments exist in File 1 but are missing or incomplete in File 2:")
|
||||
|
||||
# Calculate total length of removed segments
|
||||
total_removed_length = 0
|
||||
removed_by_road = {}
|
||||
|
||||
for segment in removed:
|
||||
geom = segment['geometry']
|
||||
length_feet = geom.length * 364000.0 # Convert to feet
|
||||
total_removed_length += length_feet
|
||||
|
||||
# Get road name
|
||||
road_name = "Unknown"
|
||||
name_fields = ['name', 'NAME', 'road_name', 'street_name', 'FULLNAME']
|
||||
for field in name_fields:
|
||||
if field in segment and pd.notna(segment[field]):
|
||||
road_name = str(segment[field])
|
||||
break
|
||||
if road_name not in removed_by_road:
|
||||
removed_by_road[road_name] = []
|
||||
removed_by_road[road_name].append(length_feet)
|
||||
|
||||
print(f"Total removed length: {total_removed_length:,.1f} feet ({total_removed_length/5280:.2f} miles)")
|
||||
|
||||
for road, lengths in sorted(removed_by_road.items()):
|
||||
road_total = sum(lengths)
|
||||
print(f" • {road}: {len(lengths)} segment(s), {road_total:,.1f} feet")
|
||||
|
||||
if added:
|
||||
print(f"\n🔵 ADDED ROADS ({len(added)} roads):")
|
||||
print("These roads exist in File 2 but are missing or incomplete in File 1:")
|
||||
|
||||
# Calculate total length of added roads
|
||||
total_added_length = 0
|
||||
added_by_road = {}
|
||||
|
||||
for road in added:
|
||||
geom = road['geometry']
|
||||
length_feet = geom.length * 364000.0 # Convert to feet
|
||||
total_added_length += length_feet
|
||||
|
||||
# Get road name
|
||||
road_name = "Unknown"
|
||||
name_fields = ['name', 'NAME', 'road_name', 'street_name', 'FULLNAME']
|
||||
for field in name_fields:
|
||||
if field in road and pd.notna(road[field]):
|
||||
road_name = str(road[field])
|
||||
break
|
||||
|
||||
if road_name not in added_by_road:
|
||||
added_by_road[road_name] = 0
|
||||
added_by_road[road_name] += length_feet
|
||||
|
||||
print(f"Total added length: {total_added_length:,.1f} feet ({total_added_length/5280:.2f} miles)")
|
||||
|
||||
for road, length in sorted(added_by_road.items()):
|
||||
print(f" • {road}: {length:,.1f} feet")
|
||||
|
||||
if not removed and not added:
|
||||
print("\n✅ No significant differences found!")
|
||||
print("The road networks have good coverage overlap within the specified tolerance.")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Compare two GeoJSON files containing roads and find significant gaps or extras (Optimized)",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
python sumter-multi-modal-convert.py osm-multi-modal.geojson county-multi-modal.geojson
|
||||
python sumter-multi-modal-convert.py osm-multi-modal.geojson county-multi-modal.geojson --tolerance 100 --min-length 200
|
||||
python sumter-multi-modal-convert.py osm-multi-modal.geojson county-multi-modal.geojson --output differences.geojson
|
||||
python sumter-multi-modal-convert.py osm-multi-modal.geojson county-multi-modal.geojson --jobs 8 --chunk-size 2000
|
||||
"""
|
||||
)
|
||||
|
||||
parser.add_argument('file1', help='First GeoJSON file')
|
||||
parser.add_argument('file2', help='Second GeoJSON file')
|
||||
parser.add_argument('--tolerance', '-t', type=float, default=50.0,
|
||||
help='Distance tolerance in feet for considering roads as overlapping (default: 50)')
|
||||
parser.add_argument('--min-length', '-m', type=float, default=100.0,
|
||||
help='Minimum length in feet for gaps/extras to be considered significant (default: 100)')
|
||||
parser.add_argument('--output', '-o', help='Output GeoJSON file for results (optional)')
|
||||
parser.add_argument('--jobs', '-j', type=int, default=None,
|
||||
help='Number of parallel processes (default: CPU count - 1)')
|
||||
parser.add_argument('--chunk-size', '-c', type=int, default=1000,
|
||||
help='Number of geometries to process per chunk (default: 1000)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Validate input files
|
||||
if not Path(args.file1).exists():
|
||||
print(f"Error: File {args.file1} does not exist")
|
||||
return 1
|
||||
|
||||
if not Path(args.file2).exists():
|
||||
print(f"Error: File {args.file2} does not exist")
|
||||
return 1
|
||||
|
||||
try:
|
||||
# Create comparator and run comparison
|
||||
comparator = RoadComparator(
|
||||
tolerance_feet=args.tolerance,
|
||||
min_gap_length_feet=args.min_length,
|
||||
n_jobs=args.jobs,
|
||||
chunk_size=args.chunk_size
|
||||
)
|
||||
|
||||
removed, added = comparator.compare_roads(args.file1, args.file2)
|
||||
|
||||
# Print summary
|
||||
comparator.print_summary(removed, added, args.file1, args.file2)
|
||||
|
||||
# Save results if output file specified
|
||||
if args.output:
|
||||
comparator.save_results(removed, added, args.output)
|
||||
elif removed or added:
|
||||
# Auto-generate output filename if differences found
|
||||
output_file = f"multi_modal_differences_{Path(args.file1).stem}_vs_{Path(args.file2).stem}.geojson"
|
||||
comparator.save_results(removed, added, output_file)
|
||||
|
||||
return 0
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {str(e)}")
|
||||
return 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
exit(main())
|
@ -14,6 +14,13 @@ TODO:
|
||||
- handle polygons properly (on previous geojson step?) for circular roads
|
||||
- ignore roads that aren't LIFECYCLE ACTV or Active
|
||||
- include OneWay=Y
|
||||
- handle C 44a -> County Road 44A
|
||||
- handle Tpke -> Turnpike
|
||||
- handle Trce -> Trace/Terrace?
|
||||
- handle Cor -> Corner
|
||||
- handle Obrien -> O'Brien
|
||||
- handle Oday -> O'Day
|
||||
- Ohara -> O'Hara
|
||||
"""
|
||||
|
||||
import json
|
||||
|
Loading…
x
Reference in New Issue
Block a user